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Mechanically Assisted Corrosion

Tribocorrosion (wear and corrosion)

Fretting Corrosion (fretting and corrosion often in presence of a crevice)
— Fretting = small scale cyclic motion (< 100 um) between two opposing surfaces

Stress Corrosion Cracking
Stress Enhanced Corrosion

Each is present in hip replacements where metals are stressed, abraded, worn
or fretted

Crevice-like environments add to the severity and complexity of the corrosion

Fretting INITIATED Crevice Corrosion — Fretting can produce the conditions for
run-away corrosion (where fretting (or wear) is no longer required)

— Fretting = Match

— Crevice Corrosion = Fire



Some Basic Facts of Importance

You CANNOT HAVE WEAR of Metal Alloy Hip Implants WITHOUT
CORROSION!

— (But, you can have corrosion without wear)

WEAR and CORROSION ARE COUPLED and NON-LINEAR

— Wear -> Oxide Film Abrasion -> Corrosion -> Voltage Drop ->
-> Altered Oxide -> Altered Wear

Oxide Films on Alloy Surfaces are Critical to Mechanically Assisted
Corrosion Behavior and Corrosion Resistance

With Corrosion: Voltage drops (cathodic excursions) and currents are
generated which can affect the implant

— depends on area abraded,
— crevice geometries
— and area available for reduction reactions

Cathodic excursions have significant effects on the local biological
reaction. It’s not just about the metal ions and debris!



Hip Prosthesis Corrosion Sources

Examples of Current Modular Designs

Not indicative of anything
corrosion related

Shell-Liner Taper

Metal-on-Metal articulation

Head-Neck Taper

Neck-Stem Taper

Modular-Body Taper

< Implant-Bone or Cement Interface

Modularity, articulating surfaces and other
interfaces are where mechanically assisted
corrosion can occur.

Most severe corrosion observed at modular tapers
Corrosion at one location affects all others (e.g., voltage drops)



In-Vivo Corrosion of Modular Tapers: Head-Neck Tapers: 1993
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All currently-used alloy
combinations are known to be
susceptible to attack (Ti, CoCrMo,
316LSS)

Passive oxide films on the surface
are central to mechanism of
attack.
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Modular Body Interfaces: Ti6AI4V/TI6AI4V Interfaces: 2009

Company A Company B Company C
» Infection-related » Infection-related »Pain
> 22 months » Unknown -17? » 27 months

Rodrigues, et al., JBMR-B, 2009



Ti/Ti Modular Tapers:

Fretting Crevice Corrosion is STILL a problem

Z Control Z Taper S Control S Taper M Control M Taper

Sample

Rodrigues, et al., JBMR-B, 2009

ZE Km

Pitting Corrosion and Hydrogen

Embrittlement have been observed, Fretting INITIATED Crevice Corrosion



Modular Neck Corrosion: 2012

In-Vivo Oxide-Induced Stress Corrosion Cracking in Ti-6Al-4V Modular Neck-stem Tapers
Medial proximal neck-stem taper cracking

Gilbert et al., 2012, JBMR-B

Head-Neck
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Neck-Stem Taper



In-Vitro Fretting Corrosion Testing
316L SS Stem/CoCrMo Head Couples
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Electrochemistry of Fretting Interfaces

Metal ions, phosphate, chloride,
hydrogen ions accumulate in
crevice

Fretting currents consist of
dissolution and repassivation
reactions

Oxidation debris accumulates in

crevice
POf' Cl Debris
Crevice |- ,,, H* M*CI'
Solution H* H Cl M ! Asperity
Oxide NW\T M*
e e- T - —
- ) 1. & e
Vietal : €. Toexternal
1. M—>M"™+ne ® surface

2. M+H,0 > MO +2H"+2e” Excess electrons decrease voltage of implant



Crevices and Spatially Separated Half-Cell Reactions

Crevice and fretting localize
oxidation

— Oxide film repassivation
— Metal ion dissolution

Outside Crevice

— Reduction (multiple, biologically
based species available)

Note: in crevice
— Oxygen depletion
— pHdrops
— CI, PO,* increases to balance M*

Note: Fretting disrupts oxide in
crevice and accelerates oxidation
by 6 orders of magnitude.

Build up of electrons drops
voltage of surface
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Oxide Abrasion: High Speed Scratch Testing Ti- and CoCr Alloy
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Asperity-Based Model of Fretting Corrosion Currents
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Reduction Reactions and Cell Viability (MC3T3-E1)

1 uA/cm? of reduction reaction kills cells

CoCrMo 24 hr at voItage, Haeri et al., 2012, Biomaterials  Cp-Ti, 24 hr at Vo|tage’ Erhensberger et al., JBMR-A, 2010
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It’s not just about the metal ions



Animations of Cell Behavior Under Voltage Control 7 & i
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(real time in upper left of each image)



Corrosion — lon Level Estimate:
Can one estimate ion levels from corrosion currents?

Assume Steady State: Rate of generation of ions=rate of excretion via Urine

Urine ion levels versus current for
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Conclusions

Mechanically assisted corrosion (MAC) continues to be a
serious concern for metallic biomaterials in all applications

Wear and Corrosion are coupled and interactive
Fretting can INITIATE crevice corrosion
All current alloy systems are susceptible to MAC

Negative voltage excursions result from MAC and may lead
to adverse biological responses (apoptosis in-vitro)
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